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Abstract

An extension of the wave propagation algorithm first introduced by LeVeque [J. Comput. Phys. 131 (1997) 327] is

developed for hyperbolic systems on a general curved manifold. This extension is important in a variety of applications,

including the propagation of sound waves on a curved surface, shallow water flow on the surface of the Earth, shallow

water magnetohydrodynamics in the solar tachocline, and relativistic hydrodynamics in the presence of compact objects

such as neutron stars and black holes. As is the case for the Cartesian wave propagation algorithm, this new approach is

second order accurate for smooth flows and high-resolution shock-capturing. The algorithm is formulated such that

scalar variables are numerically conserved and vector variables have a geometric source term that is naturally incor-

porated into a modified Riemann solver. Furthermore, all necessary one-dimensional Riemann problems are solved in a

locally valid orthonormal basis. This orthonormalization allows one to solve Cartesian Riemann problems that are

devoid of geometric terms. The new method is tested via application to the linear wave equation on a curved manifold

as well as the shallow water equations on part of a sphere. The proposed algorithm has been implemented in the

software package CLAWPACKCLAWPACK and is freely available on the web.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In many physical applications, geometric considerations require the use of numerical grids that are not

Cartesian. If the solution domain is a flat manifold but contains complicated internal or external bound-

aries, it is often possible to introduce a curvilinear grid that conforms to the boundaries [40]. A funda-
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mentally different situation arises when the solution domain is a curved manifold, such as the surface of a

sphere of radius r embedded in R3. In this situation, the curvature of the manifold modifies the underlying

dynamics.
In this paper we are specifically interested in the solution of hyperbolic partial differential equations on

curved manifolds. A few examples of problems in which one must solve hyperbolic PDEs on a curved

manifold include the propagation of sound waves on curved surfaces (e.g. [41]), shallow water dynamics on

the surface of a planet as a simplified model of the atmosphere (e.g. [4,19,33]), and the propagation of

magneto-gravity waves in the solar tachocline (e.g. [12,37,38]). Another example arises in the study of

relativistic flow of matter in the presence of compact objects such as neutron stars and black holes. In this

example, the equations of relativisitic gas dynamics must be solved on a space–time manifold that is curved

due to the gravitational force of the object (e.g. [11,29,32]).
For curvilinear grids, a standard numerical approach is to update the hyperbolic system in Cartesian

form, or sometimes referred to as strong conservation-form, in order to avoid the introduction of

source terms [42]. However, this strategy does not work for general curved manifolds. Philosophically

speaking, there are two approaches one can take in order to solve PDEs on a curved manifold M � Rn.

The first approach is not to directly solve the equations on the manifold, but instead to solve the

equations in Cartesian form in Rn with the help of a Lagrange multiplier to force the solution to

remain on M � Rn (e.g. [5,39]). The advantage is that all of the geometry is hidden in a relatively

simple source term; the disadvantage is that one must solve in a higher-dimensional domain. The al-
ternative to this strategy is to solve directly on the manifold. This removes the extra space dimension,

but introduces geometric source terms and flux functions that explicitly vary in space. This strategy has

been widely used in numerical simulations of shallow water on the surface of a sphere (e.g. [4,19,33]) as

well as relativistic hydrodynamics (e.g. [11,29,32]). In this work we will pursue the approach of directly

solving on the curved manifold.

In particular, we present in this work a numerical scheme that is a generalization of the wave

propagation method [23,24,27]. The wave propagation method is a high-resolution finite volume

method for solving hyperbolic systems. The basic algorithm applies to equations in Cartesian coordi-
nates, although it has also been extended to general quadrilateral grids on flat manifolds (see Chapter

23 of [27]). The method is numerically conservative, second order accurate in smooth regions, non-

dispersive in regions of large gradients, and shock-capturing. This method has been successfully applied

in the past to several applications areas, including gas dynamics [21], acoustics [9,10], elasticity and

plasticity [8,22,26,27], combustion and detonation waves [16,17], relativistic hydrodynamics [1], and

numerical relativity [3,18].

The philosophy pursued in our modified wave propagation algorithm is described below:

(1) The hyperbolic system is solved in the coordinate basis defined by the numerical grid. Components of
vector unknowns are updated in contravariant form. In this form, the equations become a system of

balance laws with flux functions that depend explicitly on the spatial coordinates and with geometric

source terms that appear in the equations for the vector unknowns.

(2) For smooth flows the algorithm produces a second order accurate approximation in space and time:

OðjD~xj2;Dt2Þ.
(3) The algorithm is shock-capturing.

(4) The explicit spatial variation present in the flux functions is handled through the use of an approximate

Riemann solver that is based on decomposing flux differences.
(5) With this approach no operator splitting is required. The geometric source term is discretized through

the use of parallel transport.

(6) All necessary Riemann problems are solved in a locally valid orthonormal basis. This removes all

geometric terms and reduces the original coordinate Riemann problem to a Cartesian Riemann

problem.
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The above philosophy results in a wave propagation algorithm that requires only the knowledge of the

underlying metric and how to solve orthonormal Riemann problems. The interaction of the geometry with

the hyperbolic wave propagation is handled internally by the algorithm.
For simplicity, we focus specifically on manifolds that can be described by two independent coordinates.

The numerical method presented in this paper extends in a straightforward manner to manifolds described

by three independent coordinates. The corrections introduced by Langseth and LeVeque [21] can be used to

approximate the double transverse terms that arise in three dimensions. Key concepts such as parallel

transport (see Section 5.1) and orthonormalization (see Section 5.3) also naturally extend to higher di-

mensions. Some discussion of this can be found in [1].
2. Notation and some concepts from differential geometry

We first explain some of the notation used in this paper and introduce some basic concepts from dif-

ferential geometry. A summary of the notation that will be used throughout this paper can be found in

Table 1. Unless otherwise noted, summation is implied whenever the same index appears as both a sub-

script and a superscript. For example,

Cm
nkT

kn ¼
X
n

X
k

Cm
nkT

kn:
2.1. Curved manifolds

Differential geometry describes the geometric structure of a curved differentiable manifold, M. For

example, a manifold M may represent the nearly spherical surface of a planet, a curved space–time in

relativity theory, or the surface of an elastic membrane. We develop an intuitive notion of a manifold by the

following heuristic definition:
Table

Summ

Sym

~x, xk

T
$
; T

q; qk
~f ; f k

h
$
; hmffiffiffi
h

p

~ek ;~e
Ck

mn
A manifold is a set of points that looks locally Euclidean in that this set can be entirely covered by a collection of local

coordinate mappings.
In this work we consider a two-dimensional curved manifold that is embedded in R3. Let the coordinates

ðx1; x2Þ be the coordinates on the manifold M. This coordinate system can be related to the standard

Cartesian coordinate system, ðx; y; zÞ, through the transformations
1

ary of notation

bol Description

Vector in physical space, kth component
mn Tensor in physical space, mnth component

Vector in state space, kth component

Tensor: rows in physical, columns in state, kth column

n; hmn Metric tensor, mnth component, mnth component of inverse

Square root of the determinant of the metric
n kth Coordinate basis vector, nth coordinate co-basis vector

kmnth Christoffel symbol
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x ¼ X ðx1; x2Þ; ð1Þ
y ¼ Y ðx1; x2Þ; ð2Þ
z ¼ Zðx1; x2Þ: ð3Þ

A vector, ðl1; l2Þ, in contravariant form on the manifold M can be transformed to a vector, ðlx; ly ; lzÞ, in
Cartesian space through the Jacobian J in the following way:

lx

ly

lz

2
4

3
5 ¼ J

l1

l2

� �
¼

oX
ox1

oX
ox2

oY
ox1

oY
ox2

oZ
ox1

oZ
ox2

2
4

3
5 l1

l2

� �
: ð4Þ

Therefore, the coordinate transformations directly give us a natural basis in which to represent vectors on
M. We will refer to such a basis as a coordinate basis.
2.2. The metric tensor

The metric tensor, h
$
, is a symmetric tensor that provides a measure of length on M. The metric

relates true distances as measured in R3 to the coordinate distances measured in the coordinate system

of the manifold. In particular, the line element ds2 ¼ ðdxÞ2 þ ðdyÞ2 þ ðdzÞ2 in R3 is related to dx1 and

dx2 through

ds2 ¼ hmn dxm dxn: ð5Þ

The distance along a curve CðkÞ parameterized by k from CðaÞ to CðbÞ is given by

L ¼
Z b

a
hmn

dxm

dk

� �
dxn

dk

� �����
����
1=2

dk: ð6Þ

The surface area of X � M can be evaluated by computing the following integral:

Surface Area of X ¼
Z
Xðx1;x2Þ

ffiffiffi
h

p
dx1 dx2; ð7Þ

where
ffiffiffi
h

p
is the square root of the determinant of the metric tensor.

Using the Jacobian matrix discussed above, the metric can be constructed as follows:

h
$
¼ J tJ : ð8Þ

Furthermore, if the metric tensor is non-singular we denote the inverse of the metric tensor by

hmn � h
$�1
� �

mn

: ð9Þ

This implies that

hmkhkn ¼ dnm; ð10Þ

where dnm is the Kroenecker delta.
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2.3. Christoffel symbols

The final concept from differential geometry that we need to introduce is the Christoffel symbol. The
components of the basis (~ek), co-basis (~en), and the metric tensor will in general be functions of x1 and x2. It
is therefore necessary to modify the notion of a derivative.

For example, the gradient of vector ~U with contravariant components Uk is given by the following [31]:

~r~U ¼ o

oxn
Uk

�
þ Ck

mnU
m

�
~en �~ek; ð11Þ

where � is the outer product. In this expression, oUk=oxn is the usual term one would expect when com-

puting ~r~U in a Cartesian basis. The additional term, Ck
mnU

m, appears because the underlying basis is

spatially varying.

Similarly, the gradient of a tensor T
$
can be written as

~rT
$
¼ o

oxl
T km

�
þ Ck

nlT
nm þ Cm

nlT
kn

�
~el �~ek �~em: ð12Þ

In this case, two additional terms, Ck
nlT

nm and Cm
nlT

kn, appear because the underlying basis is spatially

varying.

The components of the tensor Ck
mn are referred to as the Christoffel symbols or as connection coefficients.

They involve spatial derivatives of the metric tensor h
$
. In particular, in a coordinate basis they can be

written as follows (see [31]):

Ck
mn �

1

2
hak

o

oxn
ham

�
þ o

oxm
han �

o

oxa
hmn

�
: ð13Þ

As will be seen in the next section, the Christoffel symbols play an important role in wave propagation on
curved manifolds.
3. Conservation laws on curved manifolds

Consider the flow of a substance with M state variables, qð~x; tÞ 2 RM . In the absence of any sources or

sinks, the time rate of change of the integral of each state variable over the volume V is only dependent on

the flux of that variable through the boundary, oV. Mathematically, this is expressed with the following
integral conservation law:

o

ot

Z
V

qðt;~xÞ dVþ
Z
dV

~f ðqÞ �~n ds ¼ 0; ð14Þ

where ~f ðqÞ 2 RM�2 is the flux function, ~n is the outward pointing unit normal vector to dV, and s is the
arclength parameterization of dV.

The differential form of (14) is written as

o

ot
qþ ~r �~f ðqÞ ¼ 0; ð15Þ

and is well known to a diverse community of computational fluid dynamicists. It is also well known that the

integral conservation law may exhibit discontinuous solutions that satisfy a weak form of (15) together with

an entropy condition imposed by the underlying physics of the system at hand.
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In order to solve (15), it is necessary to express the conservation law in some basis. In flat space, Eq. (15)

is often written in a Cartesian basis

o

ot
qþ o

ox
f xðqÞ þ o

oy
f yðqÞ ¼ 0: ð16Þ

Note that f xðqÞ and f yðqÞ do not depend explicitly on space and that no geometric source terms are evident.

In many interesting applications, however, we are required to solve (15) on a smooth manifold M covered

by a set of non-Cartesian basis vectors. In general, the coordinate basis representation of (15) takes the
form of a balance law:

o

ot
qþ o

ox1
f 1ðq;~xÞ þ o

ox2
f 2ðq;~xÞ ¼ wcðq;~xÞ; ð17Þ

where the flux has now gained an explicit dependence on the spatial coordinates and a geometrically in-

duced source term has appeared.
To further understand Eq. (17) let us consider a conservation law in which q is comprised of a scalar

quantity qð~x; tÞ (e.g. density) and a vector quantity ~lð~x; tÞ (e.g. momentum)

qð~x; tÞ ¼ q
~l

� �
: ð18Þ

Let the corresponding flux function be

~f ðq;~xÞ ¼
~U
T
$

� �
: ð19Þ

The divergence of a vector ~U can be computed by taking the trace of ~r~U . ~r~U is given by (11) and the trace

of this expression is obtained if we contract by letting n ¼ k (which implies summation on k):

~r � ~U ¼ o

oxk
Uk þ Ck

mkU
m ¼ 1ffiffiffi

h
p o

oxk
ffiffiffi
h

p
Uk

� �
; ð20Þ

where we have made use of the fact that

Ck
mk ¼

1ffiffiffi
h

p o

oxm
ð
ffiffiffi
h

p
Þ: ð21Þ

Similarly, the divergence of a tensor can be obtained if we contract expression (12) by letting l ¼ k:

~r � T
$
¼ o

oxk
T km

�
þ Ck

nkT
nm þ Cm

nkT
kn

�
~em ¼ 1ffiffiffi

h
p o

oxk
ffiffiffi
h

p
T km

� ��
þ Cm

nkT
kn

�
~em: ð22Þ

Using results (20) and (22), we can rewrite Eq. (15) in coordinate form:

o

ot
qþ 1ffiffiffi

h
p o

oxk
ffiffiffi
h

p
Uk

� �
¼ 0; ð23Þ
o

ot
lm þ 1ffiffiffi

h
p o

oxk
ffiffiffi
h

p
T km

� �
¼ �Cm

nkT
kn: ð24Þ

The focus of this paper is to develop an accurate numerical method for the solution of Eqs. (23) and (24).

Note that both the scalar equation (23) and the vector equation (24) have flux functions that explicitly vary
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in space. Furthermore, the vector equation (24) has an additional geometric source term that describes

transfer between l1ð~x; tÞ and l2ð~x; tÞ due to spatial variation in the coordinate basis.
4. The wave propagation method in Cartesian coordinates

In this section we introduce the wave propagation method of LeVeque [24]. In particular, we focus on

aspects of the method that are relevant for the wave propagation method on curved manifolds.

4.1. Cartesian finite volume methods

Let us first consider Cartesian conservation laws of the form (16). We construct a Cartesian grid with

grid spacing Dx and Dy and let

xi ¼ x‘ þ i
�

� 1

2

�
Dx; ð25Þ
yj ¼ y‘ þ j
�

� 1

2

�
Dy; ð26Þ

where ðx‘; y‘Þ is the lower-left corner of the rectangular computational domain. In each grid cell centered at
ðxi; yjÞ and at each time tn, a finite volume method will produce an approximation to the average of qð~x; tÞ:

Qn
ij �

1

DxDy

Z yjþ1=2

yj�1=2

Z xiþ1=2

xi�1=2

qðn; g; tnÞ dn dg: ð27Þ

If Dt � tnþ1 � tn, then the time averaged flux of q from t ¼ tn to t ¼ tnþ1 across the cell interface located at

xi�1=2 and the cell interface located at yj�1=2 can be written as

F1
i�1=2;j �

1

Dt

Z tnþ1

tn
f x qð~xi�1=2;j; sÞ
� �

ds; ð28Þ
F2
i;j�1=2 �

1

Dt

Z tnþ1

tn
f y qð~xi;j�1=2; sÞ
� �

ds; ð29Þ

respectively. Conservation now tells us that Qnþ1
ij must be equal to Qn

ij minus the flux of Q out of the grid

cell centered at ðxi; yjÞ

Qnþ1
ij ¼ Qn

ij �
Dt
Dx

F1
iþ1=2;j

�
� F1

i�1=2;j

�
� Dt
Dy

F2
i;jþ1=2

�
� F2

i;j�1=2

�
: ð30Þ

All Cartesian finite volume methods can be written in the form (30). A full numerical scheme is obtained by

choosing a specific strategy for constructing the numerical fluxes F1 and F2. Independent of how these

fluxes are computed, however, update (30) guarantees numerical conservation [27].
4.2. The standard wave propagation method

In the wave propagation method, update (30) is rewritten in a slightly different form
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Qnþ1
ij ¼ Qn

ij �
Dt
Dx

A�
1 DQiþ1=2;j

h
þAþ

1 DQi�1=2;j

i
� Dt
Dy

A�
2 DQi;jþ1=2

h
þAþ

2 DQi;j�1=2

i

� Dt
Dx

~F1
iþ1=2;j

h
� ~F1

i�1=2;j

i
� Dt
Dy

~F2
i;jþ1=2

h
� ~F2

i;j�1=2

i
; ð31Þ

where A�DQ and AþDQ are fluctuations. The wave propagation method is constructed so that the fluc-

tuations contain corrections needed for a first order Godunov update and the numerical fluxes ~F1 and ~F2

contain higher order corrections [24,27].

In the standard wave propagation method the fluctuations are constructed by solving locally linearized
Riemann problems. At each cell interface ðxi�1=2; yjÞ we have to solve a Riemann problem of the form

o

ot
qþ Ai�1=2;j

o

ox
q ¼ 0; ð32Þ
qðx; 0Þ ¼ Qi�1;j if x < xi�1=2;
Qij if x > xi�1=2;

	
ð33Þ

where

Ai�1=2;j �
of x

oq
qð~xi�1=2;j; tÞ;~xi�1=2;j

� �
ð34Þ

is an approximate flux Jacobian that is considered to be constant in the Riemann problem. We denote the

eigenvalues, right eigenvectors, and left eigenvectors of Ai�1=2;j by spi�1=2;j, r
p
i�1=2;j, and ‘pi�1=2;j.

In order to solve Riemann problems (32) and (33), the difference between Qij and Qi�1;j is decomposed

along the eigenvectors of Ai�1=2;j. Based on these eigenvectors and eigenvalues, the fluctuations A�
1 DQi�1=2;j

and Aþ
1 DQi�1=2;j in (31) are assembled by summing all the components of the flux that are left- and right-

going, respectively. Mathematically, we write

Qij �Qi�1;j ¼
XM
p¼1

W p
i�1=2;j; ð35Þ
W p
i�1=2;j ¼ ‘pi�1=2;j � Qij


h
�Qi�1;j

�i
rpi�1=2;j; ð36Þ
Aþ
1 DQi�1=2;j ¼

X
p: sp

i�1=2;j
>0

spi�1=2;jW
p
i�1=2;j; ð37Þ
A�
1 DQi�1=2;j ¼

X
p: sp

i�1=2;j
<0

spi�1=2;jW
p
i�1=2;j; ð38Þ

where we refer to W p
i�1=2 as a wave and spi�1=2;j as a wave speed. To obtain the fluctuations A�

2 DQi;j�1=2 and

Aþ
2 DQi;j�1=2, an analogous process to that of (35), (37), (38) must be applied in the 2-direction.

It is well known that linearized Riemann solvers such as the one presented here can produce entropy

violating solutions for transonic rarefactions [7,27]. A transonic rarefaction occurs when the solution to the

Riemann problem contains a rarefaction that is part left-going and part right-going with respect to the
reference frame fixed at ðxi�1=2; yjÞ. In this case, the linearized Riemann problem will represent this rare-

faction as a jump discontinuity which is either left or right traveling. This problem can be corrected by
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redefining fluctuations (37) and (38) so that locally we obtain a more diffusive numerical update that gives

the correct entropy satisfying solution. In particular, we utilize an entropy fix similar to the one devised by

Harten and Hyman [13]. We refer the reader to Chapter 15 of LeVeque [27] for more discussion on the
implementation of this entropy fix in the wave propagation method framework.

Without additional corrections, the wave propagation method so far is only OðjD~xj;DtÞ accurate and in

2-dimensions only stable up to a Courant number of 1/2 [23,24,27]. To overcome these difficulties, higher

order correction fluxes are introduced. To eliminate the numerical diffusion introduced by the first order

method, the high-resolution correction is constructed

~F1
i�1=2;j ¼

1

2

XM
p¼1

spi�1=2;j

��� ��� 1

�
� Dt
Dx

spi�1=2;j

��� ����W p
i�1=2/i�1=2;j; ð39Þ

where /i�1=2 is a wave limiter. When / � 1, the wave propagation method reduces to the classical Lax–

Wendroff method for linear problems. In general, however, the wave limiter allows the method to switch

between a second order method in smooth regions of the solution and a first order method near discon-

tinuities. Finally, in order to make this method stable up to Courant number 1 without dimensional

splitting, transverse corrections based on solving transverse Riemann problems are added to the numerical

fluxes. For more details on these corrections, we refer the reader to [23,24,27].
4.3. Capacity form differencing

One generalization of the above wave propagation method that will be required when solving conser-

vation laws (23) and (24) on curved manifolds is the inclusion of a capacity function [24,27]. In (23) and (24),

the square root of the determinant of the metric,
ffiffiffi
h

p
, acts as a capacity function. In Cartesian coordinates, a

conservation law with a capacity function jð~xÞ > 0 can be written as

o

ot
jqð Þ þ o

ox
f xðqÞ þ o

oy
f yðqÞ ¼ 0: ð40Þ

The cell average of q in the grid cell centered at ðxi; yjÞ is now given by

Qn
ij �

1

jijDxDy

Z yjþ1=2

yj�1=2

Z xiþ1=2

xi�1=2

jðn; gÞqðn; g; tnÞ dn dg ð41Þ

instead of (27). The normal and transverse Riemann problems remain unaltered by the capacity function.

The high-resolution correction fluxes (39), the transverse correction fluxes, and update (31) must all be

modified by replacing all the Dts that appear in these expressions by Dt=j evaluated at the appropriate
spatial location [24,27]. These formulas are given in detail in Section 6 for wave propagation algorithm on

curved manifolds.

4.4. Spatially varying flux functions

In this and the next section, we briefly summarize two key results from Bale et al. [2]. These results will be

important when we go to solve Eqs. (23) and (24) on a curved manifold. Consider a Cartesian conservation

law with flux functions that explicitly vary in space

o

ot
qþ o

ox
f xðq;~xÞ þ o

oy
f yðq;~xÞ ¼ 0: ð42Þ
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The method presented in [2] relies on modifying the approximate Riemann problems that are solved at each

grid interface to take into account the spatial variation in the flux.

The key difference between the original wave propagation method [24] and the modifications presented
in [2] is that in [2] we solve the approximate Riemann problem by decomposing flux differences instead of

differences in Q. Instead of the Riemann problems (32) and (33), we must now solve, at each cell interface

ðxi�1=2; yjÞ, a generalized Riemann problem of the form

o

ot
qþ o

ox
f xðq; xÞ ¼ 0; ð43Þ
qðx; 0Þ ¼ Qi�1;j if x < xi�1=2;
Qij if x > xi�1=2;

	
ð44Þ
f xðq; xÞ ¼ f x
i�1;jðqÞ if x < xi�1=2;

f x
ijðqÞ if x > xi�1=2:

	
ð45Þ

If the Rankine–Hugoniot conditions are used to test for a standing wave solution ðs ¼ 0Þ across the cell

interface at x ¼ xi�1=2 we obtain the following result:

f xijðQ
þÞ � f xi�1;jðQ

�Þ ¼ 0: ð46Þ

Because f x
ijðqÞ 6¼ f xi�1;jðqÞ it follows from (46) that qðx; t > 0Þ must be discontinuous and f xðx; t > 0Þmust be

continuous across x ¼ xi�1=2. Therefore, a wave decomposition based on Q differences would have to correct
for the additional jump across x ¼ xi�1=2. A wave decomposition based on flux differences, on the other

hand, requires only the usual M waves and the additional standing wave Qþ � Q� is automatically gen-

erated because (46) is exactly satisfied.

The modified wave decomposition now takes the following form:

DF1 � f xðQij;~xijÞ � f xðQi�1;j;~xi�1;jÞ ¼
XM
p¼1

Zp
i�1=2;j; ð47Þ

where

Zp
i�1=2;j ¼ ‘pi�1=2;j � DF

1
h i

rpi�1=2;j: ð48Þ

The fluctuations in update (31) are now

Aþ
1 DQi�1=2;j ¼

X
p:sp

i�1=2;j
>0

Zp
i�1=2;j þ

1

2
Z; ð49Þ
A�
1 DQi�1=2;j ¼

X
p:sp

i�1=2;j
<0

Zp
i�1=2;j þ

1

2
Z; ð50Þ

where

Zi�1=2;j ¼
X

p:sp
i�1=2;j

¼0

Zp
i�1=2;j: ð51Þ
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In [35] it is shown that if spi�1=2;j ¼ 0 for some 16 p6m then Zi�1=2;j � 0 if the approximate flux Jacobian

satisfies

~Ai�1=2;j Qij



�Qi�1;j

�
¼ f xðQij;~xijÞ � f xðQi�1;j;~xi�1;jÞ: ð52Þ

In general, however, Zi�1=2;j 6¼ 0 if spi�1=2;j ¼ 0 for some 16 p6m. Independent of the approximate flux

Jacobian, however, the above wave decomposition guarantees that update (31) is numerically conservative.

This is because

Aþ
1 DQi�1=2;j þA�

1 DQi�1=2;j ¼ f xðQij;~xijÞ � f xðQi�1;j;~xi�1;jÞ ð53Þ

by construction (47).

The linearized Riemann solver based on (47)–(50) again fails to produce the correct entropy solution in
the case of a transonic rarefaction. A transonic rarefaction will occur in the pth wave family if

kpl < 0 and kpr > 0; ð54Þ

where kpl;r represents the pth eigenvalue of the flux Jacobian evaluated at Qi�1;j and Qij, respectively. If a

transonic rarefaction occurs, we apply a modified version of the Harten and Hyman [13] approach. In
particular, we define the quantity

hp ¼ sp � kpr
kpl � kpr

� �
kpl
sp

� �
; ð55Þ

and place the wave, Zp, partly into the left fluctuation and partly into the right fluctuation:

A�
1 DQ ¼ A�

1 DQ þ hpZp; ð56Þ
Aþ

1 DQ ¼ Aþ
1 DQ þ ð1� hpÞZp: ð57Þ

Note that this maintains numerical conservation.

Next, the high-resolution correction flux (39) is replaced by

~F1
i�1=2;j ¼

1

2

XM
p¼1

sign spi�1=2;j

� �
1

�
� Dt
Dx

spi�1=2;j

��� ���� ~Zp
i�1=2;j; ð58Þ

where

~Zp
i�1=2;j ¼ Zp

i�1=2;j /i�1=2;j: ð59Þ

Finally, the general form of the transverse corrections remains unaltered [2].

Bale et al. [2] verify through numerical experiment that the above modifications produce a numerical

method that is OðjD~xj2;Dt2Þ accurate for smooth solutions, captures shocks well, and is stable up to

Courant number 1.
4.5. Source terms

We present in this section a generalization of the wave propagation method for balance laws of the form

o

ot
qþ o

ox
f xðq;~xÞ þ o

oy
f yðq;~xÞ ¼ wðq;~xÞ: ð60Þ
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Results discussed in this section will later be used for obtaining solutions to evolution equation (24) for

vector quantities on curved manifolds (see Section 5.2).

The approach we describe in this section for handling source terms was first discussed in the context
of the wave propagation method in [28] and then further developed in [2]. This method completely

avoids the need for operator splitting and achieves an accurate numerical solution to (60) through

minor modifications of the wave decomposition (47). Because operator splitting is avoided in this

approach, steady-states can be more accurately maintained if w1 and w2 are chosen appropriately. See

[2,35] for specific examples.

In order to incorporate the source term into the one-dimensional wave decomposition (47), we must first

separate the source term into two distinct pieces

wðq;~xÞ ¼ w1ðq;~xÞ þ w2ðq;~xÞ: ð61Þ

It can be shown through simple Taylor series arguments that the order of accuracy of the wave propagation

method is unaffected by the specific choice of w1 and w2 [35]. The choice only becomes important when the

solution is in or near a steady state. If the numerical method is to accurately maintain a discrete form of the
steady state, one needs to choose the w1 and w2 so that they satisfy the following relationships in the steady

state:

o

ox
f xðq;~xÞ ¼ w1ðq;~xÞ; ð62Þ

o

oy
f yðq;~xÞ ¼ w2ðq;~xÞ: ð63Þ

In some applications, a natural choice for w1 and w2 can easily be found. This is true for example in the

shallow water equations with bottom topography [25]. In Section 5.2 we will show that a natural choice also

exists for conservation laws on curved manifolds.

Bale et al. [2] show that the source term can be incorporated into the wave decomposition if we replace

(47) by

DF1 � f xðQij;~xijÞ � f xðQi�1;j;~xi�1; jÞ � Dx w1
i�1=2;j ¼

XM
p¼1

Zp
i�1=2;j; ð64Þ

where

w1
i�1=2;j � w1 qð~xi�1=2;j; tÞ;~xi�1=2;j

� �
: ð65Þ

The rest of the wave decomposition method remains unaltered including the construction of the high-

resolution fluxes (58) and the transverse corrections. As is shown in [2], the following corrections must be

added to update (31) in order to achieve second order accuracy for smooth solutions

Qnþ1
ij ¼ � � � � 1

2

Dt2

Dx
S1

ij �
1

2

Dt2

Dy
S2

ij; ð66Þ

where

S1
ij ¼

1

2

ow

oq

� �
ij

XM
p¼1

~Zp
i�1=2;j

h
þ ~Zp

iþ1=2;j

i
; ð67Þ
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S2
ij ¼

1

2

ow

oq

� �
ij

XM
p¼1

~Zp
i;j�1=2

h
þ ~Zp

i;jþ1=2

i
: ð68Þ

Corrections (67) and (68) are required for OðjD~xj2;Dt2Þ accuracy because what is not taken into account in

(64) is the time variation of the source term. In fact, we are assuming here that the source term is of the form

wðq;~xÞ; and therefore, the source term varies in time only through qð~x; tÞ. If the source term was explicitly

dependent on time

w ¼ wðq;~x; tÞ; ð69Þ

then another correction would have to be added to (66) [35]

Qnþ1
ij ¼ � � � � 1

2

Dt2

Dx
S1

ij �
1

2

Dt2

Dy
S2

ij �
1

2
Dt2

ow

ot
: ð70Þ
5. The wave propagation method on curved manifolds

In this section, we develop a method for solving balance laws of the form (23) and (24) on a general

curved manifold. Although one could directly apply the algorithm developed in [2] to Eqs. (23) and (24),

there are still two issues that must be resolved.

In the source term approach described in Section 4.5, one must decide how to split wðq;~xÞ into w1ðq;~xÞ
and w2ðq;~xÞ. We present in Sections 5.1 and 5.2 a strategy based on geometric considerations for obtaining

w1ðq;~xÞ and w2ðq;~xÞ.
Another important issue is that we would much prefer to solve Riemann problems in an orthonormal

frame instead of the coordinate basis in which Eqs. (23) and (24) are written. In the coordinate basis,

metric terms can complicate the eigenvectors and eigenvalues of the approximate flux Jacobian. The

approximate flux Jacobian in an orthornormal or Cartesian frame is devoid of metric terms. We present

in Section 5.3 a method for reducing the coordinate Riemann problems to locally valid orthonormal

Riemann problems.
5.1. Parallel transport

In any type of Godunov scheme, one must solve a Riemann problem between two adjacent grid cells. A

Riemann problem between two grid cells that lie on a curved manifold is complicated by the fact that the

coordinate basis in which the solution is represented varies in space. For example, consider the two vectors

f 1ij and f 1
i�1;j. Subtracting these two quantities, as is required in the wave decomposition (47), does not make

sense since these vectors are being represented in different coordinate systems. To overcome this problem,

one can transform vectors f 1
ij and f 1

i�1;j to a common coordinate system, for example the coordinate system

at ðx1i�1=2; x
2
j Þ, through the action of parallel transport [31].

Parallel transport is an operation that takes a vector ~l at a point A and transports it to a point B along

the curve ~cðkÞ, where k is some parameterization of the curve (e.g. arclength). Parallel transport accom-

plishes this in such a way that~l remains parallel to~cðkÞ, or equivalently, the directional derivative of~cðkÞ in
the direction of the tangent of~cðkÞ identically vanishes

d

dk
~l � V k rkl

jð Þ~ej �
dlj

dk

�
þ Cj

mnl
mV n

�
~ej ¼ 0; ð71Þ
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where ~V ¼ d~c=dk is the tangent vector to~c [31]. For our purposes, we need to be able to transport vectors

along coordinate lines, in which case (71) becomes

o

oxk
l1

l2

� �
þ C1

1k C1
2k

C2
1k C2

2k

� �
l1

l2

� �
¼ 0: ð72Þ

Eq. (72) is a system of two coupled ordinary differential equations. Instead of computing the solution to this

system exactly for each grid cell, we approximate the solution with a Taylor series

~l
xkþDxk

2

���� ¼~l xkj þ Dxk

2

o

oxk
~l xkj þ OððDxkÞ2Þ ¼~l xkj � Dxk

2

C1
1k C1

2k

C2
1k C2

2k

� �
~l xkj þ OððDxkÞ2Þ; ð73Þ

where there is no implied summation over k. Let qð~x; tÞ be the vector defined by (18). From the Taylor

series, we can now define a parallel transport matrix that transforms the qð~x; tÞ from the coordinate basis at

xk to the coordinate basis at xk þ Dxk=2

q
l1

l2

2
4

3
5

xkþDxn
2

� I

0
@ 	 Dxk

2

0 0 0

0 C1
1k C1

2k

0 C2
1k C2

2k

2
4

3
5

ij

1
A q

l1

l2

2
4

3
5

xk

� Pk

ij

q
l1

l2

2
4

3
5

xk

; ð74Þ

where I is the identity matrix. This defines the parallel transport matrix Pk

ij , where ij is the grid point

location, the k superscript denotes the coordinate direction along which the propagation will occur

ðk ¼ 1; 2Þ, and the 
 determines if the transport is in the positive ðþÞ or negative ð�Þ coordinate direction.
To invert the parallel transport operation one can simply invert Pk


ij exactly.
5.2. Parallel transport and the geometric source term

From the geometric point view, parallel transport is a natural process in which two vectors that exist at

different spatial locations can be expressed in the same reference frame. In this section we investigate what

effect parallel transport has from the point of view of numerically solving the partial differential equations

(23) and (24).

Let us consider the Riemann problem between the cells centered at ðx1i ; x2j Þ and ðx1i�1; x
2
j Þ. The fluxes

in these cells are f 1ij and f 2i�1;j, respectively. To compute the flux difference DF1 required in the wave

decomposition (47), we first apply the appropriate parallel transport matrices so that f 1ij and f 2i�1;j

both get (approximately) represented in the coordinate basis at ~xi�1=2;j, then difference these two

quantities

DF1 ¼ P 1�
ij f 1

ij � P 1þ
i�1; j f

1
i�1;j: ð75Þ

Using definition (74), this expression can be re-written as follows:

DF1 ¼ I

0
@ þ Dx1

2

0 0 0

0 C1
11 C1

21

0 C2
11 C2

21

2
4

3
5

ij

1
Af 1ij � I

0
@ � Dx1

2

0 0 0

0 C1
11 C1

21

0 C2
11 C2

21

2
4

3
5

i�1;j

1
Af 1i�1;j

¼ f 1
ij � f 1

i�1;j � Dx1w1
i�1=2;j; ð76Þ

where
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w1
i�1=2;j � � 1

2

0ffiffiffi
h

p
C1

11T
11 þ C1

12T
21


 �ffiffiffi
h

p
C2

11T
11 þ C2

12T
21


 �
2
4

3
5

ij

0
B@ þ

0ffiffiffi
h

p
C1

11T
11 þ C1

12T
21


 �ffiffiffi
h

p
C2

11T
11 þ C2

12T
21


 �
2
4

3
5

i�1;j

1
CA: ð77Þ

This same analysis applied to a Riemann problem between the cells centered at ðx1i ; x2j Þ and ðx1i ; x2j�1Þ yields

DF2 ¼ f 2
ij � f 2

i;j�1 � Dx2w2
i;j�1=2; ð78Þ

where

w2
i;j�1=2 � � 1

2

0ffiffiffi
h

p
C1

21T
12 þ C1

22T
22


 �ffiffiffi
h

p
C2

21T
12 þ C2

22T
22


 �
2
4

3
5

ij

0
B@ þ

0ffiffiffi
h

p
C1

21T
12 þ C1

22T
22


 �ffiffiffi
h

p
C2

21T
12 þ C2

22T
22


 �
2
4

3
5

i;j�1

1
CA: ð79Þ

We showed in Section 4.5 that appropriately modifying the flux differences that are decomposed into waves

yields a numerical method for solving balance laws. In particular, the modifications introduced into the flux

differences by parallel transport yield a numerical update for a balance law with the following source term:

w � w1 þ w2 ¼ �
ffiffiffi
h

p 0

C1
nkT

kn

C2
nkT

kn

2
4

3
5: ð80Þ

This is precisely the source term found on the right-hand side of Eq. (24) if we multiply (24) through by
ffiffiffi
h

p
.

We conclude from this analysis that the application of parallel transport to the flux functions produces a

natural numerical method for dealing with the geometric source term in (24). To obtain a formally second

order update we can again introduce correction terms of the form (66).

5.3. Orthonormalization

For some hyperbolic partial differential equations, the Riemann problem in a general coordinate system

may be significantly more difficult to solve than the Riemann problem for the same set of equations in an

orthonormal frame. In this section we present a modification of the wave propagation method described so

far that allows us to replace coordinate Riemann problems (23) and (24) with locally valid orthonormal

(Cartesian) Riemann problems. The approach we outline here was first introduced by Pons et al. [32] in the
context of converting general relativistic Riemann problems into locally valid special relativistic Riemann

problems.

If we again consider the model system (23) and (24), then the orthonormalization matrices that locally

transform vectors in coordinate space to an orthonormal frame in the 1- and 2-directions are given by

Q̂ ¼ O1Q ¼
1 0 0

0

ffiffiffiffiffi
h22

p ffiffi
h

p 0

0 h12ffiffiffiffiffi
h22

p ffiffiffiffiffiffi
h22

p

2
664

3
775Q; ð81Þ
Q̂ ¼ O2Q ¼

1 0 0

0
ffiffiffiffiffiffi
h11

p h12ffiffiffiffiffi
h11

p

0 0

ffiffiffiffiffi
h11

p ffiffi
h

p

2
664

3
775Q; ð82Þ

respectively. A full derivation of these matrices can be found in [1].
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In order to obtain an orthonormal Riemann problem, flux differences of the form (75) must be ort-

honormalized

DF̂1 ¼ O1
i�1=2; j P 1�

ij f 1ij

�
� P 1þ

i�1; j f
1
i�1; j

�
: ð83Þ

For nonlinear problems we also need to compute the following quantities in order to construct an ap-
proximate flux Jacobian in the orthonormal frame:

Q̂l ¼ O1
i�1=2; jP

1�
ij Qij; ð84Þ

Q̂r ¼ O1
i�1=2; j P

1þ
i�1; jQi�1; j: ð85Þ

Once this has been accomplished, DF̂1 is decomposed into waves Ẑp and fluctuations are computed from
these

Aþ
1 DQ̂ ¼

X
p:̂sp>0

Ẑp þ 1

2

X
p:̂sp¼0

Ẑp; ð86Þ

A�
1 DQ̂ ¼

X
p:̂sp<0

Ẑp þ 1

2

X
p:̂sp¼0

Ẑp: ð87Þ

This information must now be de-orthonormalized in order for it to be used in the coordinate basis update:

spi�1=2;j ¼ ŝp �
ffiffiffi
h

p ffiffiffiffiffiffi
h11

p� �
i�1=2;j

; ð88Þ

Zp
i�1=2;j ¼ O1

� �1

i�1=2;j
Ẑp; ð89Þ

A

1 DQi�1=2;j ¼ O1

� �1

i�1=2;j
A


1 DQ̂: ð90Þ

These results are then used to construct high-resolution corrections (58). Finally, transverse Riemann

problems are also solved in an orthonormal frame using the same technique. A more detailed description of

the full wave propagation method on curved manifolds is presented in Section 6.

5.4. A note about accuracy and stability

All the modifications presented in Section 4 maintain the order of accuracy and stability properties of the

original wave propagation method. These modifications are each discussed in more detail elsewhere:
(1) capacity form differencing (see [24,27]),

(2) modified Riemann solvers for spatially varying flux functions (see [2]),

(3) modified Riemann solvers for balance laws (see [2]), and

(4) orthonormal Riemann solvers (see [1,35]).
6. The algorithm

In this section we outline in some detail our proposed wave propagation algorithm on curved manifolds.

In each step it is understood that there is a loop over all indices i and j in the computational domain.

We propose the following algorithm:

(1) Compute fluxes at cell centers:

F1
ij ¼ f 1 Qn

ij; x
1
i ; x

2
j

� �
:
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(2) Parallel transport the cell averages to the cell edges:

Qr ¼ P 1�
ij Qn

ij;

Ql ¼ P 1þ
i�1;jQ

n
i�1;j;

D�F ¼ P 1�
ij F1

ij � P 1þ
i�1;jF

1
i�1;j:

(3) Orthonormalize at each cell edge:

Q̂r ¼ O1
� 

i�1=2;j
Qr;

Q̂l ¼ O1
� 

i�1=2;j
Ql;

Q̂ ¼ AVG Q̂l; Q̂r

� �
;

DF̂ ¼ O1
� 

i�1=2;j
D�F:

(4) Solve the normal Riemann problem by decomposing flux differences:

Ẑp ¼ ‘̂p1 � DF̂
h i

r̂p1;
A�
1 DQ̂ ¼

X
p:̂sp<0

Ẑp þ 1

2

X
p:̂sp¼0

Ẑp;
Aþ
1 DQ̂ ¼

X
p:̂sp>0

Ẑp þ 1

2

X
p:̂sp¼0

Ẑp:

The above linearized Riemann problem is based on the eigenvalues (̂sp), right eigenvectors (̂rp1), and left

eigenvectors (‘̂p1) of the flux Jacobian evaluated at Q̂. Q̂ is obtained by consistently averaging Q̂l and Q̂r;

Roe averaging and arithmetic averaging are common choices.

(5) De-orthonormalize the results from the normal Riemann solve at the cell edge:

spi�1=2;j ¼ ŝp �
ffiffiffi
h

p ffiffiffiffiffiffi
h11

p� �
i�1=2;j

;

W p
i�1=2;j ¼ O1

� �1

i�1=2;j
Ẑp;

A

1 DQi�1=2;j ¼ O1

� �1

i�1=2;j
A


1 DQ̂:

(6) Apply the TVD wave limiter:

For each p; set I ¼
i� 1 if spi�1=2;j > 0;

iþ 1 if spi�1=2;j < 0;

(

hpi�1=2;j ¼
Zp

I�1=2;j �Z
p
i�1=2;j

Zp
i�1=2;j �Z

p
i�1=2;j

;

~Zp
i�1=2;j ¼ Zp

i�1=2;j / hpi�1=2;j

� �
:
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(7) Construct high-resolution corrections:
~F1
i�1=2;j ¼

1

2

XM
p¼1

sign spi�1=2;j

� �
1

 
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

hi�1=2;j

p Dt
Dx1

spi�1=2;j

��� ���
!

~Zp
i�1=2;j:
(8) Construct second order source term corrections:
S1
ij ¼

1

2

o w1 þ w2

 �

oq

" #
ij

XM
p¼1

~Zp
i�1=2;j

h
þ ~Zp

iþ1=2;j

i
:

(9) Add high-resolution corrections to fluctuations and orthonormalize the result at the cell edge (Ql

and Qr are from step (2)):
Q̂r ¼ O2
� 

i�1=2;j
Qr;

Q̂l ¼ O2
� 

i�1=2;j
Ql;

Q̂ ¼ AVG Q̂l; Q̂r

� �
;

A

1 DQ̂ ¼ O2

� 
i�1=2;j

A

1 DQi�1=2;j

�
	 2F1

i�1=2;j

�
:

(10) Solve transverse Riemann problem at the cell edge:
bp
� ¼ ‘̂p2 �A�

1 DQ̂;

bp
þ ¼ ‘̂p2 �Aþ

1 DQ̂;

A�
2 A

�
1 DQ̂ ¼

X
p:̂sp<0

ŝpbp
� r̂

p
2;

A�
2 A

þ
1 DQ̂ ¼

X
p:̂sp<0

ŝpbp
þr̂

p
2;

Aþ
2 A

�
1 DQ̂ ¼

X
p:̂sp>0

ŝpbp
�r̂

p
2;

Aþ
2 A

þ
1 DQ̂ ¼

X
p:̂sp>0

ŝpbp
þr̂

p
2:

In the above expressions, ŝp, r̂p2, and ‘̂p2 are the eigenvalues, right eigenvectors, and left eigenvectors of the

approximate flux Jacobian in the 2-direction. These quantities are evaluated at Q̂, where Q̂ is the same

quantity as computed in step (3).
(11) De-orthonormalize at the cell edge:
A

2 A

�
1 DQi�1=2;j ¼

ffiffiffi
h

p ffiffiffiffiffiffi
h22

p� �
i�1=2;j

O2
� �1

i�1=2;j
A


2 A
�
1 DQ̂;

A

2 A

þ
1 DQi�1=2;j ¼

ffiffiffi
h

p ffiffiffiffiffiffi
h22

p� �
i�1=2;j

O2
� �1

i�1=2;j
A


2 A
þ
1 DQ̂:
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(12) Correct fluxes:

~F2
i;jþ1=2 ¼ ~F2

i;jþ1=2 �
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
hi�1=2;j

p Dt
Dx1

Aþ
2 A

þ
1 DQi�1=2;j;

~F2
i;j�1=2 ¼ ~F2

i;j�1=2 �
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
hi�1=2;j

p Dt
Dx1

A�
2 A

þ
1 DQi�1=2;j;

~F2
i�1;jþ1=2 ¼ ~F2

i�1;jþ1=2 �
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
hi�1=2;j

p Dt
Dx1

Aþ
2 A

�
1 DQi�1=2;j;

~F2
i�1;j�1=2 ¼ ~F2

i�1;j�1=2 �
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
hi�1=2;j

p Dt
Dx1

A�
2 A

�
1 DQi�1=2;j:

(13) Repeat steps (1)–(12) in the 2-direction.

(14) Update solution:

Qnþ1
ij ¼ Qn

ij �
1

2

1ffiffiffiffiffi
hij

p Dt2

Dx1
S1

ij �
1

2

1ffiffiffiffiffi
hij

p Dt2

Dx2
S2

ij �
1ffiffiffiffiffi
hij

p Dt
Dx1

A�
1 DQiþ1=2;j

h
þAþ

1 DQi�1=2;j

i

� 1ffiffiffiffiffi
hij

p Dt
Dx2

A�
2 DQi;jþ1=2

h
þAþ

2 DQi;j�1=2

i
� 1ffiffiffiffiffi

hij
p Dt

Dx1
~F1
iþ1=2;j

h
� ~F1

i�1=2;j

i

� 1ffiffiffiffiffi
hij

p Dt
Dx2

~F2
i;jþ1=2

h
� ~F2

i;j�1=2

i
:

The above stated algorithm has been implemented in Fortran and is freely available as part of the

CLAWPACK software package, as an extension called CLAWMAN; see http://www.amath.washing-

ton.edu/~claw/clawman.html. The latest version of CLAWPACK also includes MATLAB graphics rou-
tines for visualizing solutions on two-dimensional manifolds.

In the standard CLAWPACKCLAWPACK software package, the user must specify initial conditions (qinit.f),

boundary conditions (bc2.f), and a normal and a transverse Riemann solver (rpn2.f and rpt2.f). The

only additional information that the user must specify in the curved manifold extension is a subroutine that

specifies the metric tensor (metric.f), the flux function (flux_fun2.f), and the matrix ow=oq
(psiq2.f). All the required operations of parallel transport, orthonormalization, and re-scaling are

handled internally by the algorithm.
7. The scalar field equation

In the remainder of the paper we present some numerical test problems to demonstrate the accuracy of

this algorithm. More results, some animations, and the source code may be found at: http://

www.amath.washington.edu/~claw/clawman.html.

As a first example, we apply the wave propagation algorithm to the scalar field equation on a curved

manifold M. This equation models the propagation of acoustic waves in a thin membrane whose shape is
given by the manifold M. The scalar field equation can be written as

o2

ot2
u� ~r � ð~ruÞ ¼ 0: ð91Þ

The pressure, pð~x; tÞ, and the fluid velocity, ~uð~x; tÞ, can be obtained by taking appropriate temporal and

spatial gradients of the scalar field:

http://www.amath.washington.edu/~claw/clawman.html
http://www.amath.washington.edu/~claw/clawman.html
http://www.amath.washington.edu/~claw/clawman.html
http://www.amath.washington.edu/~claw/clawman.html
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pð~x; tÞ ¼ � o

ot
uð~x; tÞ; ð92Þ

~uð~x; tÞ ¼ ~ruð~x; tÞ: ð93Þ

Replacing uð~x; tÞ in Eq. (91) by the above definitions and imposing that

~r o

ot
u

� �
¼ o

ot
~ru
� �

ð94Þ

results in the following system of balance laws for the pressure and the components of the fluid velocity

o

ot
qþ 1ffiffiffi

h
p o

oxk
f k ¼ wc; ð95Þ

where

qð~x; tÞ ¼
p
u1

u2

2
4

3
5; f k q;~x

� �
¼

ffiffiffi
h

p uk

phk1

phk2

2
4

3
5; wc q;~x

� �
¼

0

�C1
mnph

nm

�C2
mnph

nm

2
4

3
5: ð96Þ

The orthonormal version of Eq. (96) can be obtained by setting h
$
to the identity matrix. The corresponding

wave decomposition of the orthonormal flux Jacobian is

R̂1 ¼
�1 0 1

1 0 1

0 1 0

2
64

3
75; K̂1 ¼

�1

0

1

2
64

3
75; R̂�1

1 ¼ 1

2

�1 1 0

0 0 2

1 1 0

2
64

3
75; ð97Þ

R̂2 ¼
�1 0 1

0 1 0

1 0 1

2
64

3
75; K̂2 ¼

�1

0

1

2
64

3
75; R̂�1

2 ¼ 1

2

�1 0 1

0 2 0

1 0 1

2
64

3
75: ð98Þ

One can easily show that the orthonormal equations form a strictly hyperbolic system of conservation laws

(see [27]).

7.1. The geometry

We consider the propagation of sound waves on a surface given by z ¼ bðx; yÞ, where x, y, and z are the
standard Cartesian coordinates. In this case, the transformation to surface coordinates is quite simple since

x and y already parameterize the surface:

x ¼ X ðx1; x2Þ ¼ x1; ð99Þ
y ¼ Y ðx1; x2Þ ¼ x2; ð100Þ
z ¼ Zðx1; x2Þ ¼ bðx1; x2Þ: ð101Þ

The Jacobian matrix that transforms a vector on the surface of M into a Cartesian vector is

J ¼
1 0

0 1
ob
ox1

ob
ox2

2
4

3
5: ð102Þ

The metric and the square root of the determinant of the metric for this coordinate system are
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h
$
¼

1þ ob
ox1


 �2 ob
ox1

ob
ox2

ob
ox1

ob
ox2 1þ ob

ox2


 �2
" #

; ð103Þ

ffiffiffi
h

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ob

ox1

� �2

þ ob
ox2

� �2
s

; ð104Þ

respectively. In the example shown below we set

bðrÞ ¼ � exp

�
� r

0:22

� �2�
; ð105Þ

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ð Þ2 þ x2ð Þ2

q
ð106Þ

is the radial distance from the origin to the point ðx1; x2Þ.
Note that this manifold is asymptotically flat and that the coordinate basis is asymptotically orthogonal

as r ! 1. Near the origin, however, the manifold is strongly curved and the coordinate basis is non-or-

thogonal. This surface is shown in Fig. 3.

7.2. Test 1: order of accuracy

We begin by considering an examples in which the initial conditions are radially symmetric

pðr; 0Þ ¼ 0:5 cos 20p
3
ðr � 0:35Þ


 �
þ 0:5 if 0:26 r6 0:5;

0 otherwise;

	

u1ðr; 0Þ ¼ u2ðr; 0Þ ¼ 0:

The magnitude of the velocity vector in R3 is given by

j~u3Dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1Þ2 þ ðu2Þ2 þ u1

ob
ox1

þ u2
ob
ox2

� �2
s

:

Because the initial conditions and the metric tensor are radially symmetric, the exact solution in this ex-

ample is also radially symmetric. In order to compute the order of accuracy of the wave propagation

method, we compare the curved manifold solution to a highly resolved (6000 points) one-dimensional the

radially symmetric equations

o

ot
p þ o

or
hrrvð Þ ¼ � hrrvffiffiffi

h
p o

or

ffiffiffi
h

p� �
; ð107Þ
o

ot
vþ o

or
p ¼ 0; ð108Þ

where
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ffiffiffi
h

p
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb0ðrÞÞ2

q
; ð109Þ

hrr ¼ 1
�

þ ðb0ðrÞÞ2
��1

; ð110Þ

j~u3Dj ¼
ffiffiffiffiffiffiffiffiffiffi
hrrv2

p
: ð111Þ

The computed pressure and magnitude of velocity at time t ¼ 0:45 are shown in Figs. 1(a) and (b), re-

spectively. These graphs are scatter plots of the curved manifold solution on a 100� 100 grid along with a
highly resolved one-dimensional solution. The results demonstrate the ability of the wave propagation

algorithm to accurately approximate the solution and maintain the radial symmetry of the problem. Direct

experimental verification of second order accuracy is shown in Fig. 2. These plots clearly indicate that the

wave propagation method is OðjD~xj2;Dt2Þ in both pressure and velocity.
Fig. 2. Convergence study for the scalar field equations on a curved manifold. Shown are the 1-norm errors in the (a) pressure and (b)

the magnitude of the three-dimensional velocity vector.

Fig. 1. The solution of the scalar field equation on a curved manifold with radially symmetric initial conditions. Shown are scatter

plots of (a) the pressure and (b) the magnitude of velocity on a 100� 100 grid along with a highly resolved (6000 points) 1D solution.

This computation was run with a CFL number of 0.95 and the Monotonized Centered limiter.
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7.3. Test 2: multidimensional wave

Next we consider a non-symmetric solution to the acoustic equations. The initial conditions for this test
consist of a right-going pressure pulse started near the left edge of the computational domain:

pðx; y; 0Þ ¼
1 if � 0:95 < x < �0:75;

0 otherwise;

	

u1ðr; 0Þ ¼
1 if � 0:95 < x < �0:75;

0 otherwise;

	
u2ðr; 0Þ ¼ 0:

The solution with these initial conditions on a 200� 200 grid is shown in Fig. 3. The same problem on a

400� 400 grid is shown in Fig. 4. On the solution we superimpose the curved manifold, z ¼ bðx; yÞ, but
sampled at a lower resolution of 50� 50. This result demonstrates the ability of the wave propagation

algorithm to resolve discontinuous solutions in multidimensions.
8. Shallow water flow on the sphere

Geophysical fluid dynamics is another application where it is important to solve hyperbolic systems on

curved manifolds. The shallow water equations on the surface of a sphere provide a simplified model for the

dynamics of the Earth’s global atmosphere. A more sophisticated model would be to consider the multi-

layer shallow water equations. In either case, the Earth’s curvature affects the dynamics of the atmosphere.

An important first step in developing a dynamical core for global climate model (GCM) is to consider the

solution of the shallow water equations on the surface of a sphere [43].

The shallow water equations in generalized coordinates satisfy Eq. (95) with

qð~x; tÞ ¼
/
/u1

/u2

2
4

3
5; f k q;~x

� �
¼

ffiffiffi
h

p /uk
T k1

T k2

2
4

3
5; wc q;~x

� �
¼

0

�C1
mnT

nm

�C2
mnT

nm

2
4

3
5; ð112Þ

and

T nm ¼ /unum þ 1

2
/2hnm: ð113Þ

A full derivation of the shallow water equations in Cartesian coordinates can be found in [20].

The wave decomposition of the flux Jacobians is given below

R̂1 ¼
1 0 1

Û 1 �
ffiffiffiffi
U

p
0 Û 1 þ

ffiffiffiffi
U

p

Û 2 1 Û 2

2
64

3
75; K̂1 ¼

Û 1 �
ffiffiffiffi
U

p
0 0

0 Û 1 0

0 0 Û 1 þ
ffiffiffiffi
U

p

2
664

3
775; ð114Þ

R̂2 ¼
1 0 1

Û 1 1 Û 1

Û 2 �
ffiffiffiffi
U

p
0 Û 2 þ

ffiffiffiffi
U

p

2
64

3
75; K̂2 ¼

Û 2 �
ffiffiffiffi
U

p
0 0

0 Û 2 0

0 0 Û 2 þ
ffiffiffiffi
U

p

2
664

3
775; ð115Þ

where



Fig. 3. Solution to the acoustic equations on a curved manifold for an initially right-going, discontinuous pressure pulse. The solution

was computed on a 200� 200 grid. The contours of the pressure are plotted on a plane projected down from the manifold. The

manifold is also displayed but at a lower resolution than the computed solution (50� 50). This computation was run with a CFL

number of 0.95 and the Monotonized Centered limiter.
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Fig. 4. Fine grid (400� 400 points) calculation of the problem shown in Fig. 3. The manifold is again displayed at a resolution of

50� 50 grid points.
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U ¼ 1

2
/rð þ /lÞ; ð116Þ

Û k ¼
ffiffiffiffiffi
/r

p
ûkr þ

ffiffiffiffiffi
/l

p
ûklffiffiffiffiffi

/r

p
þ

ffiffiffiffiffi
/l

p ð117Þ

are the Roe averages and ð/l; û
1
l ; û

2
l Þ and ð/r; û

1
r ; û

2
r Þ are the constant initial states on the left and right,

respectively. If a transonic rarefaction is encountered in the Riemann problem we construct fluctuations
based on the Harten–Hyman entropy fix. The reader is referred to [27] for a discussion of Roe averages and

entropy fixes.
8.1. The geometry

Although there are many types of numerical grids that have been devised to solve the shallow water

equations on the surface of a sphere [14,15,30,33,34,36], we consider in this paper only a longitude–latitude

grid. In order to avoid the coordinate singularities that occur at the North and South Poles, we will only
compute solutions on part of the sphere.

The numerical method presented in this paper has been successfully applied to the ‘‘cubed sphere’’ in

[35], which appears to be a much better choice of coordinates for problems on the full sphere. In this paper

we do not make use of the ‘‘cubed sphere’’ grid primarily because we would like to avoid discussion of the

complications resulting from internal boundaries and ‘‘corner’’ points; and instead, our focus here will be

on the affects of curvature on the shallow water equations. See [35] for a treatment of the internal

boundaries and ‘‘corner’’ points arising from the ‘‘cubed sphere’’ grid and some shallow water results on the

full sphere.
Let ðx1; x2Þ 2 ½�180�; 180�� � ½�90�; 90�� be the longitude and latitude, respectively, on a sphere of radius

r. The coordinate transformation from the sphere to Cartesian coordinates is
x ¼ X ðx1; x2Þ ¼ r cosðx2Þ cosðx1Þ; ð118Þ
y ¼ Y ðx1; x2Þ ¼ r cosðx2Þ sinðx1Þ; ð119Þ
z ¼ Zðx1; x2Þ ¼ r sinðx2Þ: ð120Þ
The metric and the square root of the determinant of the metric for this coordinate system are
h
$
¼ r2 cos2ðx2Þ 0

0 r2

� �
; ð121Þ

ffiffiffi
h

p
¼ r2 cosðx2Þ; ð122Þ

respectively. In all the computations below we set r ¼ 1.
8.2. Test 1: non-rotating sphere

We first consider shallow water flow on a non-rotating sphere. In order to avoid the coordinate sin-

gularities at the poles, the shallow water equations are solved on only part of sphere:

ðx1; x2Þ 2 ½�90�; 90�� � ½�75�; 75��. For the initial conditions we place a ‘‘circular’’ depth disturbance at the

equator
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/ðx1; x2; 0Þ ¼ 2 if cos�1 cosðx1Þ cosðx2Þð Þ6 0:2;

0:2 otherwise;

(
ð123Þ

u1ðx1; x2; 0Þ ¼ u2ðx1; x2; 0Þ ¼ 0: ð124Þ

This initial condition is symmetric about the point ðx1; x2Þ ¼ ð0�; 0�Þ; and therefore, the solution should

remain symmetric for all time. After imposing symmetry, the shallow water equations reduce to the system

o

ot
/
/v

� �
þ o

oh
/v

/v2 þ 1
2
/2

� �
¼ tanðhÞ /v

/v2

� �
; ð125Þ

where h is an angle measured from ð0�; 0�Þ and v is the angular velocity away from ð0�; 0�Þ.
Fig. 5. Solution to the shallow water equations computed on a longitude–latitude grid in the domain ½�90�; 90�� � ½�75�; 75�� with
204� 170 points. The solution is shown at times (a) t ¼ 0:3, (b) t ¼ 0:6, and (c) t ¼ 0:9. The contours do not appear circular because the

sphere has been projected down to a plane. In Fig. 6 we show that the solution remains symmetric. This computation was run with a

CFL number of 0.95 and the Monotonized Centered limiter.
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The solution to the multidimensional equations on a 204� 170 grid at various times is shown in Fig. 5. A

scatter plot of this data along with a highly resolved (2000 points) solution of (125) is shown in Fig. 6.

8.3. Test 2: rotating sphere

Finally, we consider the shallow water equations on a rotating sphere. The rotation of the Earth is an

important element in the dynamics of the atmosphere and ocean. Without loss of generality we let the axis

of rotation be the Cartesian z-axis. If we solve the shallow water equations in the reference frame of the

rotating Earth, we introduce in the momentum equations a pseudo-force of the form
Fig. 6. Scatter plot of the solution shown in Fig. 5. The curved manifold solution is plotted against a highly resolved one-dimensional

symmetric solution (2000 points). The solution is again shown at times (a) t ¼ 0:3, (b) t ¼ 0:6, and (c) t ¼ 0:9. This computation was

run with a CFL number of 0.95 and the Monotonized Centered limiter.
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�2X~k �~u� X~k � X~k
�

�~r
�
; ð126Þ

where X is the rotation rate, ~k is the unit vector in the z-direction, and ~r is the position vector (i.e.
~r ¼ ðx; y; zÞ in Cartesian coordinates). The first term in the above expression is called the Coriolis force and

the second term is the centrifugal force. In order to keep matter from flying off of the surface of the Earth,
the centrifugal force and the gravitational force must be in balance. Therefore, for flows that are confined to

the surface of the Earth only the Coriolis force will affect the dynamics and we can write

wf � �f~k �~u; ð127Þ

where f ¼ 2X is the Coriolis parameter [6]. The Coriolis force written in spherical coordinates is given by

wf ¼ f tanðx2Þ /u2

� cos2ðx2Þ/u1
� �

: ð128Þ
Fig. 7. Solution to the rotating shallow water equations computed on a longitude–latitude grid in the domain ½�90�; 90�� � ½�75�; 75��
with 204� 170 points. The Coriolis parameter is set to f ¼ 10. The solution is shown at times (a) t ¼ 0:4, (b) t ¼ 0:8, and (c) t ¼ 1:2.

This computation was run with a CFL number of 0.95 and the Monotonized Centered limiter.



Fig. 8. Fine grid (408� 340 points) calculation of the problem shown in Fig. 7. The solution is again shown at times (a) t ¼ 0:4, (b)

t ¼ 0:8, and (c) t ¼ 1:2.
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The rotating shallow water equations differ from the non-rotating equations only in that the source term,

wc, is modified as follows:

wcðq;~xÞ ¼
0

�C1
mnT

nm

�C2
mnT

nm

2
4

3
5þ f tanðx2Þ

0
/u2

� cos2ðx2Þ/u1

2
4

3
5: ð129Þ

In terms of the wave propagation algorithm, we handle the geometric source term through parallel

transport and the Coriolis force through Strang operator splitting (see Chapter 17 of [27]). The results of

computation on a 204� 170 grid using initial conditions (123) and (124) and a Coriolis parameter of f ¼ 10

are shown in Fig. 7. A fine grid calculation on a 408� 340 grid is shown in Fig. 8.
9. Conclusions

We have presented in this a paper a generalization of the wave propagation method for hyperbolic

systems on curved manifolds [23,24,27]. A slightly different version of the method presented in this paper
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was first considered in [1,35]. The equations are solved in a coordinate basis resulting from the choice of

coordinates on the manifold. In general the coordinate basis representation produces a set of balance laws

in which flux functions explicitly vary in space and source terms due to geometric effects are present. The
explicit spatial variation is handled through an approach introduced in [2] in which linearized Riemann

problems are solved by locally decomposing flux differences. The geometric source terms are handled

through the action of parallel transport. The process of parallel transport is shown to be mathematically

equivalent to a procedure described in [2,28] in which source terms are incorporated into Riemann prob-

lems. Therefore, the resulting wave propagation method does not require the use of operator splitting

techniques.

We argue that the wave propagation method is second order accurate for smooth solutions as well as

shock-capturing. These claims are experimentally verified by using the algorithm to compute the solution to
the acoustic equations on a curved manifold as well as the solution of the shallow water equations on a

sphere. The Fortran code that was used to obtain these solutions is freely available for download as an add-

on to the standard CLAWPACKCLAWPACK software package.

The proposed wave propagation method has potential applications in several areas including large-scale

atmospheric flows, solar magnetohydrodynamics, and relativistic hydrodynamics. Some preliminary work

on applying this method to relativistic hydrodynamics can be found in [1] and to shallow water and shallow

water magnetohydrodynamic flow on the sphere in [35]. In addition to these applications, future work will

also concentrate on developing an adaptive mesh refinement (AMR) version of the CLAWMANCLAWMAN software.
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